
Scalability and Performance of Salinas on 
the Computational Plant

Ron Brightwell

Computation, Computers, 
and Math Center

Manoj Bhardwaj
Garth Reese

Engineering Sciences 
Center

Sandia National Laboratories



Outline

• ASCI/Red
• Computational Plant (Cplant™)
• Salinas
• Performance
• Scaling issue



ASCI/Red Hardware

• 4640 compute nodes
– Dual 333 MHz Pentium II 

Xeons
– 256 MB RAM

• 400 MB/sec bi-directional 
network links

• 38x32x2 mesh topology
• Red/Black switchable
• First machine to 

demonstrate 1+ TFLOPS
• 2.38/3.21 TFLOPS
• Deployed in 1997



ASCI/Red Compute Node Software

• Puma lightweight kernel
– Follow-on to Sandia/UNM Operating System 

(SUNMOS)
– Developed for 1024-node nCUBE-2 in 1993 by 

Sandia/UNM
– Ported to 1800-node Intel Paragon in 1995 by 

Sandia/UNM
– Ported to Intel ASCI/Red in 1996 by Intel/Sandia
– Productized as “Cougar” by Intel



ASCI/Red Software (cont’d)

• Puma/Cougar
– Space-shared model
– Exposes all resources to applications
– Consumes less than 1% of compute node memory
– Four different execution modes for managing dual 

processors
– Portals 2.0

• High-performance message passing
• Avoid buffering and memory copies
• Supports multiple user-level libraries (MPI, Intel N/X, 

Vertex, etc.)



Computational Plant (Cplant™)

• Cplant™ is a concept
– Provide computational capacity at low cost
– Build MPPs from commodity components 
– Follow ASCI/Red model and architecture

• Cplant™ is an overall effort:
– Multiple computing systems in NM & CA 
– Multiple projects 

• Portals 3.x message passing (with UNM and others)
• Cluster infrastructure tools (with HPTi)
• System integration & test
• Operations & management

• Cplant™ is a software package
– Available under GNU LGPL
– Licensed to Unlimited Scale, Inc.



Cplant™ Approach

• Hybrid approach combining commodity cluster 
technology with MPP technology

• Emulate the Intel ASCI/Red environment
– Partition model (functional decomposition)
– Space sharing (reduce turnaround time)
– Scalable services (allocator, loader, launcher)
– Complete compute node resource dedication

• Use Existing Software when possible
– Red Hat distribution, Linux
– Software developed for Intel ASCI/Red



Cplant™ Systems (SNL/NM)



Flagship Cplant™ Cluster - Antarctica

• 1792+ Compaq DS10L Slates
– 466 MHz Alpha EV6, 1 GB
– 617 MHz Alpha EV6, 1 GB

• 590 Compaq XP1000s
– 500 MHz Alpha EV6, 1 GB

• Myrinet 33MHz 64bit LANai 7.x 
and 9.x

• Myrinet Mesh64 switches
• 3-D mesh topology
• Classified, unclassified, open, 

and development network heads



Antarctica (cont’d)

256 Nodes

128 paths

24 Service
& I/O Nodes

24 Service
& I/O Nodes

256
Nodes

256
Nodes

16 Service
& I/O Nodes

256 Nodes

256 Nodes

256 Nodes
256 Nodes

256 Nodes

128 paths
128 paths

128 paths

128 paths

128 paths

32 paths

Ronne - SCN

128
Nodes16 Service

& I/O Nodes

West - SONRoss - SRN

Zermatt - SRN

256
Nodes

Ross/Antarctica
706.7 GFLOPS
on 1369 Compaq
DS10L nodes



Conceptual Partition Model

Net I/O

Service

Users

File I/OCompute

/home



Cplant™ System Software

Portals 3.x

MPI Library

Cluster Services

Hardware

IP

Parallel I/O
Library

Distributed Services Library

yod PCT bebopd pingd

Applications Portable Batch System

Linux Operating System



User-Level Software

• Redirected standard C and I/O libraries
– Intercept system calls and let yod handle them
– Uses a RPC library over Portals 3.x

• Distributed services library
– Used by for communication between runtime system 

components (yod, pct, bebopd)
– Implemented over Portals 3.x

• Puma library
– Implements dclock() and others for compatibility with 

Puma
• Startup code

– Initializes the parallel environment for a process



User-Level Software (cont’d)

• MPI library
– Portals 3.x device layer for MPICH 1.2.0
– Implements peer communication only

• Dynamic allocation library
– New code to support MPI-2 dynamic process creation 

functionality
– Not yet deployed in production

• Job library
– Allows for user-implemented job launcher

• Portals 3.x library
– Basic peer communication functions



Runtime System Components

• Yod
– Parallel job launcher

• Yod2
– Parallel job launcher for dynamic process creation
– Not yet deployed in production

• PCT
– Compute node resource manager

• Bebopd
– Compute node allocator

• Pingd/Showmesh
– Compute node status tool



Other Runtime System Tools

• cgdb
– Application process debugger built on GDB

• start-tvdsvr
– Utility for starting TotalView remote debug servers

• OpenPBS
– Enhancements for non-blocking sockets for 

increased reliability



Kernel-Level Software

• Minor patches to Linux 2.2.19 for memory locking and 
memory mapping

• cTask module
– Runtime system mappings for processes
– Process cleanup

• Portals 3.x module
– Implements Portals 3.x functionality

• RMPP module
– Myrinet device driver
– Reliability and flow control

• MyrIP module
– Provides IP packets over Myrinet



ENFS

• User-space daemon on I/O proxy nodes
• Compute nodes mount from the proxy nodes via 

Linux VFS
• I/O proxy nodes mount from a back-end cluster 

filesystem (currently XFS on SGI O2K)



Device-Level Software

• Myrinet Control Program
– Firmware running on LANai processor on NIC
– Packet engine



Salinas

• General-purpose, finite element structural 
dynamics code for massively parallel computers

• Currently offers
– Static analysis
– Direct implicit transient analysis
– Eigenvalue analysis for computing modal 

response, modal superposition-based frequency 
response, and transient response



Salinas (cont’d)

• Includes extensive library of
– Standard one-, two-, and three-dimensional 

elements
– Nodal and element loading
– Multi-point constraints



Salinas (cont’d)

• Solves systems of equations using an iterative multilevel 
solver specifically designed to exploit massively parallel 
machines
– Finite Element Tearing and Interconnect (FETI)
– Mature

• Versions used in commercial finite element packages
– Scalable

• As the number of unknowns increases and the number of 
unknowns per processor stays constant, time to solution 
stays constant 

– Accurate
• Convergence rate does not deteriorate as the iterates 

converge



Salinas Sample Problem

• Small problem size
– Only bout 3 MB per node

• Stresses the system more than larger problems
– Ratio of computation to communication is larger
– Higher frequency of message passing

• Good indicator of scaling efficiency for larger problems
• Dedicated time on Cplant™
• Non-dedicated time on ASCI/Red using a single processor 

per node
• Average of five runs



Salinas is 2.5x Faster on Cplant™
at 1000 nodes



I/O Time Is Not Scaling As Well on Cplant™



Scaling Issue on Cplant™

• MPI resource exhaustion at several hundred nodes
• “Too many MPI unexpected messages”

– AKA “Not enough posted receives”
• Short message protocol for MPI is eager
• Unexpected messages are buffered at the receiver
• Initial MPI implementation set aside 1024 8 KB buffers
• A single message of any size consumes a buffer

• MPI_Gather() in MPICH 1.2.0 is implemented via N-to-1 
algorithm

• Quick workaround was to add an MPI_Barrier() to make 
MPI_Gather() synchronous



Previous Strategy for Unexpected Messages
Pre-posted

Match none

Match any

Match any

short,unlink

short,unlink

short,unlink

0, trunc, ACK

Mark

Event 
Queue

buffer

buffer

buffer



Limitations

• Limited number of unexpected messages allowed 
due to kernel (or NIC) memory resources

• Any size unexpected message consumes an 
unexpected message slot, even zero-length

• Unexpected message limit based on count rather 
than size

• Consumes a significant amount of Portals 
resources
– 1025 memory descriptors



Current Strategy

Match none

Match any

Match any

short, ACK

short, ACK

short, ACK

0, truncate, ACK

Pre-posted receives

Event 
Queue

buffer

buffer

buffer

Match any

Match any

Marker



Advantages

• More efficient use of unexpected message 
memory
– A zero-length message doesn’t consume any 

memory
– Limitation becomes space rather than count

• Uses only a few Portals resources
– Four memory descriptors versus 1025

• More efficient for NIC-based implementations



As for Salinas…

• Change to MPI library had minimal effect on 
performance

• Overhead of extra MPI_Barrier() operation to 
synchronize MPI_Gather() operation is negligible



Summary

• A commodity Linux cluster is able to sustain 
competitive performance for a real-world code 
out to 1000 nodes

• Cplant™ is a viable large-scale platform
• Issues with network resources become important 

as applications scale



Acknowledgments

• Salinas
– Organization 9142

• Cplant™
– Organizations 9223, 9224, 9338

• Portals
– Organization 9223
– University of New Mexico
– Cluster File Systems, Inc.



http://www.cs.sandia.gov/cplant


